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" Motivation — Why stochastic motions? —

« Human motions are high-dimensional, complex, diverse, and
stochastic.

« Deterministic models are not appropriate for representing
such complex and stochastic motions.
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" Today's Topics

1. Super-fast task-agnostic probabilistic prediction
2. Physically-constrained human motion generation

3. Task-achievable robot motion planning by refining
retrieved motions
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" Task: Motion Prediction from an Image
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Ditficulty in Robot Motion Learning

« Stochasticity
 Not only one but also several motions can achieve each task.

« Controllability

« Complexity in articulated joint control

« Similar motions can or cannot be achieved due to the limited range of
joint motions.

« High precision
« Small motion difference may disturb a task.

« Small number of training samples

 Image generation >> Real robot motion planning
« Robot motions are collected by manually controlling robots.



" Difficulty in Robot Motion Learning

e Stochasticity
m) - Probabilistic models
« Representing multiple task-achievable motions
« Controllability
m) - Retrieval-based motion planning
« Motion optimization/refinement from real controllable motions
« High precision
m) - High-fidelity motion refinement
« Refinementin a high-resolution refinement space
« Small number of training samples
m) - Generative models

» Successful in-distribution sampling from a limited number of samples .



Data-Driven Stochastic Motion Evaluation ana
Optimization with Image by Spatially-Aligned
Temporal Encoding

Takeru Oba and Norimichi Ukita
ICRA2023
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Qur Solutions Tor Robot Motion Learning

« Probabilistic models
« Representing multiple task-achievable motions

m) Fnergy-Based Models (EBM)

* Retrieval-based motion planning
« Motion optimization/refinement from real controllable motions

> Refining real samples in a supervised manner

« High-fidelity motion refinement
« Refinement in a high-resolution refinement space

B HR feature space by Spatially-aligsned Temporal Encoding (STE)

* Generative models
« Successful in-distribution sampling from a limited number of samples

B B\ augmented by VAE E
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¢ Overview: EBM + Optimizer + Fusion
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1. EBM Training with Real Samples ana
Samples Augmented by VAE

. E I P(‘m(”os)) I P(m(pos)) ? I ' Positive sample
1 I
m

p(m(”))

‘Negative sample

« For training, the gradient of the EBM Ioss is expressed with motions sampled based on p(m|I).

Lepr() = szl —Ey(I', P") — log Zo(I'))

e This difficult sampling in the high-dimensional space is avoided by using real motion samples.
« These motion samples are augmented from real training samples by VAE. 17



Why Traditional Models Fail to Grasp?
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1. EBM Training with Real Samples ana
Samples Augmented by VAE
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‘Negative sample

« For training, the gradient of the EBM Ioss is expressed with motions sampled based on p(m|I).

Lepu(0) = szl —Ey(I', P") — log Zo(I'))

e This difficult sampling in the high-dimensional space is avoided by using real motion samples.
« These motion samples are augmented from real training samples by VAE. 19



52 2. Optimizer w/o Gradient Descent
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3. Traditional Fusion [1]
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E 3. Proposed Fusion:
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> Experiments: Tasks
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¥ Results: Task Success Rates

-ﬂﬂ

(a) Ours

(b) VAEBM [1] 64 88 81 27 35 10 32 48 77
(c) Ours 71 77 83 0 46 11 0 18 77
w/Langevin [2]

(d) Ours w/ GD 4 18 61 18 40 5 36 48 81
[3]

(e) Ours w/ GAP H 3 0 4 1 0 3 H 0
[4]

(f) Ours w/ ViT 0 0 0 1 1 1 4 0 2
(Traditional)
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[1] ICLR, 2021. [2] Bernoulli, 1996. [3] Neural networks , 2003. [4] CORL, 2021.



Results: Visual Comparison
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Results: Detailed Visual Comparison
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Concluding Remarks



Summary and Future Work

e« SUMmary

3. Robot motion planning with the initial state presented by an image

e Future Work

3. For physically-realistic motion planning
1. Physical & other constraints in optimization
2. Domain gap between simulation and real data: Cyber-Physical systems





