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Motivation ‒ Why stochastic motions? ‒

• Human motions are high-dimensional, complex, diverse, and 
stochastic.
• Deterministic models are not appropriate for representing 

such complex and stochastic motions.
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Todayʼs Topics

1. Super-fast task-agnostic probabilistic prediction
2. Physically-constrained human motion generation
3. Task-achievable robot motion planning by refining 

retrieved motions

1. 2. 3.
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3.
Task-achievable Robot Motion Planning 
by Refining Retrieved Motions 
Takeru Oba and Norimichi Ukita
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Task: Motion Prediction from an Image 
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Difficulty in Robot Motion Learning

• Stochasticity
• Not only one but also several motions can achieve each task.

• Controllability
• Complexity in articulated joint control
• Similar motions can or cannot be achieved due to the limited range of 

joint motions.
•High precision
• Small motion difference may disturb a task.

• Small number of training samples
• Image generation >> Real robot motion planning
• Robot motions are collected by manually controlling robots.
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Difficulty in Robot Motion Learning

• Stochasticity
• Probabilistic models

• Representing multiple task-achievable motions
• Controllability
• Retrieval-based motion planning

• Motion optimization/refinement from real controllable motions
• High precision
• High-fidelity motion refinement

• Refinement in a high-resolution refinement space
• Small number of training samples
• Generative models

• Successful in-distribution sampling from a limited number of samples 13



Data-Driven Stochastic Motion Evaluation and 
Optimization with Image by Spatially-Aligned 
Temporal Encoding
Takeru Oba and Norimichi Ukita
ICRA2023
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Our Solutions for Robot Motion Learning

• Probabilistic models
• Representing multiple task-achievable motions 

Energy-Based Models (EBM)
• Retrieval-based motion planning
• Motion optimization/refinement from real controllable motions

Refining real samples in a supervised manner
• High-fidelity motion refinement
• Refinement in a high-resolution refinement space

HR feature space by Spatially-aligned Temporal Encoding (STE)
• Generative models
• Successful in-distribution sampling from a limited number of samples

EBM augmented by VAE 15



Overview: EBM + Optimizer + Fusion
Goal

1. Evaluate a consistency 
between each optimized 
motion and the given image 
probabilistically.

2. Optimize each motion for the 
environment expressed in the 
image.

3. Fuse synchronized image and 
motion data in a high-
dimensional feature space for 
consistency evaluation.
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1. EBM Training with Real Samples and 
Samples Augmented by VAE
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• For training, the gradient of the EBM loss is expressed with motions sampled based on 𝑝ሺ𝑚|𝐼ሻ.

• This difficult sampling in the high-dimensional space is avoided by using real motion samples.
• These motion samples are augmented from real training samples by VAE.



Why Traditional Models Fail to Grasp?
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1. EBM Training with Real Samples and 
Samples Augmented by VAE
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• For training, the gradient of the EBM loss is expressed with motions sampled based on 𝑝ሺ𝑚|𝐼ሻ.

• This difficult sampling in the high-dimensional space is avoided by using real motion samples.
• These motion samples are augmented from real training samples by VAE.
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2. Optimizer w/o Gradient Descent
in Supervised Manner
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3. Traditional Fusion [1]
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3. Proposed Fusion:
Spatially-aligned Temporal Encoding (STE)
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Results: Task Success Rates
TPSWRTPUPRPKPBPCCB
947432258551858997(a) Ours

774832103527818864(b) VAEBM [1]

7718011460837771(c) Ours 
w/Langevin [2]

81483654018617854(d) Ours w/ GD 
[3]

053014035(e) Ours w/ GAP 
[4] 

204111000(f) Ours w/ ViT
(Traditional)

[1] ICLR, 2021. [2] Bernoulli, 1996. [3] Neural networks , 2003. [4] CORL, 2021. 24
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Results: Visual Comparison



Results: Detailed Visual Comparison
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Concluding Remarks
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Summary and Future Work

• Summary
1. Super-fast task-agnostic probabilistic prediction
2. Physically-constrained human motion
3. Robot motion planning with the initial state presented by an image

• Future Work
1. Extension to High-dimensional data
2. End-to-end network with differentiable physics simulator
3. For physically-realistic motion planning

1. Physical & other constraints in optimization
2. Domain gap between simulation and real data: Cyber-Physical systems
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